A-8.1 Definitions

⟨Definition A-8.1⟩ Cyclotomic Polynomial

The 𝐧-th Cyclotomic Polynomial: is a polynomial whose roots are the primitive n-th root of unity, that is:

Ξ¦n(x) = ∏ ΢∈P(n)(xβˆ’ΞΆ) = ∏ 0≀k≀nβˆ’1, gcd(k,n)=1 (xβˆ’Ο‰k)......,Β whereΒ Ο‰ = e2πœ‹π‘–βˆ•n

Remember the Euler’s formula: e2π‘˜πœ‹π‘–βˆ•n = cos⁑ (2π‘˜πœ‹ n ) + i β‹…sin⁑ (2π‘˜πœ‹ n )

A few pre-computed cyclotomic polynomials are as follows:

Ξ¦1(x) = x βˆ’1
Ξ¦2(x) = x + 1
Ξ¦3(x) = x2 + x + 1
Ξ¦4(x) = x2 + 1
Ξ¦5(x) = x4 + x3 + x2 + x + 1
Ξ¦6(x) = x2 βˆ’x + 1
Ξ¦7(x) = x6 + x5 + x4 + x3 + x2 + 1
Ξ¦8(x) = x4 + 1
Ξ¦9(x) = x6 + x3 + 1
Ξ¦10(x) = x4 βˆ’x3 + x2 βˆ’x + 1

As one example,

Ξ¦4(x) = ∏ 0≀k≀3, gcd(k,4)=1 (xβˆ’Ο‰k) = (xβˆ’Ο‰1)(xβˆ’Ο‰3) = (xβˆ’e2πœ‹π‘–βˆ•4)(xβˆ’e2β‹…3πœ‹π‘–βˆ•4) = (xβˆ’eπœ‹π‘–βˆ•2)(xβˆ’eβ‹…3πœ‹π‘–βˆ•2)

= (x βˆ’ (cos⁑ (Ο€ 2) + i β‹…sin⁑ (Ο€ 2))) β‹… (x βˆ’ (cos⁑ (3Ο€ 2 ) + i β‹…sin⁑ (3Ο€ 2 )))

= (x βˆ’i)(x + i) = x2 + 1