C-2 GLWE Ciphertext-to-Plaintext Addition

Suppose we have a GLWE ciphertext ct and a new plaintext polynomial Ξ› as follows:

𝖼𝗍 = 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M + E) = (A0,A1,Β β‹―Β ,Akβˆ’1,B) ∈R⟨n,q⟩k+1

Ξ›: a new plaintext polynomial

ΔΛ: a Ξ”-scaled new plaintext polynomial

Let’s define the following ciphertext-to-plaintext addition operation:

𝖼𝗍 + ΔΛ = (A0,Β A1,Β β‹―Β ,Akβˆ’1,Β B + ΔΛ)

Then, the following is true:

⟨Summary C-2⟩ GLWE Homomorphic Addition with a Plaintext

𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M + E) + ΔΛ

= ({Ai}i=0kβˆ’1,Β B) + ΔΛ

= ({Ai}i=0kβˆ’1,Β B + ΔΛ)

= 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(M + Ξ›) + E)

This means that adding a (Ξ”-scaled) plaintext polynomial Ξ› to a GLWE ciphertext that encrypts M and decrypting it yields M + Ξ›.

Proof.

1.
Since B = βˆ‘ ⁑ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…M + E,

B + Ξ” β‹…Ξ› = βˆ‘ ⁑ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…M + E + Ξ” β‹…Ξ› = βˆ‘ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…(M + Ξ›) + E

This means that (A0,A1,...Β Akβˆ’1,B + ΔΛ) form the ciphertext 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(Ξ› + M) + E)

2.
Thus,
𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M + E) + ΔΛ
= (A0,Β A1,...Β Akβˆ’1,Β B + ΔΛ)
= ({Ai⟨1⟩}i=0kβˆ’1,Β B + ΔΛ)
= 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(M + Ξ›) + E)
β–‘

Noise Growth: Note that after decryption, the original ciphertext 𝖼𝗍 + ΔΛ’s noise E stays the same as before. This means that ciphertext-to-plaintext addition does not increase the noise level.