C-2 GLWE Ciphertext-to-Plaintext Addition

Suppose we have a GLWE ciphertext C and a new plaintext polynomial Ξ› as follows:

C = 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M) = (A1,A2,Β β‹―Β ,Akβˆ’1,B) ∈R⟨n,q⟩k+1

Ξ›: a new plaintext polynomial

ΔΛ: a Ξ”-scaled new plaintext polynomial

Let’s define the following TFHE ciphertext-to-plaintext addition operation:

C + ΔΛ = (A1,Β A2,Β β‹―Β ,Akβˆ’1,Β B + ΔΛ)

Then, the following is true:

⟨Summary C-2⟩ GLWE Homomorphic Addition with a Plaintext

𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M) + ΔΛ

= ({Ai⟨1⟩}i=0kβˆ’1,Β B⟨1⟩) + ΔΛ

= ({Ai⟨1⟩}i=0kβˆ’1,Β B⟨1⟩+ ΔΛ)

= 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(M + Ξ›))

This means that a plaintext polynomial to a TFHE ciphertext and decrypting it gives the same result as adding two original plaintexts.

Proof.

1.
Since B = βˆ‘ ⁑ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…M + E,

B + Ξ” β‹…Ξ› = βˆ‘ ⁑ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…M + E + Ξ” β‹…Ξ› = βˆ‘ i=0kβˆ’1(Ai β‹…Si) + Ξ” β‹…(M + Ξ›) + E

This means that (A1,A2,...Β Akβˆ’1,B + ΔΛ) form the ciphertext 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(Ξ› + M))

2.
Thus,
𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M) + ΔΛ
= (A0,Β A1,...Β Akβˆ’1,Β B + ΔΛ)
= ({Ai⟨1⟩}i=0kβˆ’1,Β B + ΔΛ)
= 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”(M + Ξ›))
β–‘

C-2.1 Discussion