C-3.1 Gadget Decomposition for Noise Suppression

In the ciphertext-to-plaintext multiplication Ξ› ⋅𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M), the noise E grows to Eβ€² = Ξ› β‹…E. To limit this noise growth, we introduce a technique based on decomposing Ξ› (Β§A-6.1) and a GLev encryption (Β§B-5.1) of M as follows:

Ξ› = Ξ›1 q Ξ²1 + Ξ›2 q Ξ²2 + β‹― + Ξ›l q Ξ²lβ†’π–£π–Ύπ–Όπ—ˆπ—†π—‰Ξ²,l(Ξ›) = (Ξ›1,Ξ›2,β‹―,Ξ›l)

𝖦𝖫𝖾𝗏S,σβ,l(Ξ”M) = {𝖦𝖫𝖢𝖀S,Οƒ (Ξ”M q Ξ²1 + E1) ,𝖦𝖫𝖢𝖀S,Οƒ (Ξ”M q Ξ²2 + E2) ,⋯𝖦𝖫𝖢𝖀S,Οƒ (Ξ”M q Ξ²l + El) }

We will encrypt the plaintext M as 𝖦𝖫𝖾𝗏S,σβ,l(Ξ”M) instead of 𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M), and compute π–£π–Ύπ–Όπ—ˆπ—†π—‰Ξ²,l(Ξ›) ⋅𝖦𝖫𝖾𝗏S,σβ,l(Ξ”M) instead of Ξ› ⋅𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M). Notice that the results of both computations are the same as follows:

π–£π–Ύπ–Όπ—ˆπ—†π—‰Ξ²,l(Ξ›) ⋅𝖦𝖫𝖾𝗏S,σβ,l(Ξ”M)

= (Ξ›1,Ξ›2,β‹―,Ξ›l) β‹… (𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²Ξ”M + E1) , 𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²2Ξ”M + E2) ,Β β‹―, 𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²lΞ”M + El))

= Ξ›1 ⋅𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²Ξ”M + E1) + Ξ›2 ⋅𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²2Ξ”M + E2) + β‹― + Ξ›l ⋅𝖦𝖫𝖢𝖀S,Οƒ ( q Ξ²lΞ”M + El)

= 𝖦𝖫𝖢𝖀S,Οƒ (Ξ›1 β‹…q Ξ²Ξ”M + Ξ›1E1) + 𝖦𝖫𝖢𝖀S,Οƒ (Ξ›2 β‹… q Ξ²2Ξ”M + Ξ›2E2) + β‹― + 𝖦𝖫𝖢𝖀S,Οƒ (Ξ›l β‹… q Ξ²lΞ”M + Ξ›lEl)

= 𝖦𝖫𝖢𝖀S,Οƒ (Ξ›1 β‹…q Ξ²Ξ”M + Ξ›2 β‹… q Ξ²2Ξ”M + β‹― + Ξ›l β‹… q Ξ²lΞ”M )

= 𝖦𝖫𝖢𝖀S,Οƒ ((Ξ›1 β‹…q Ξ² + Ξ›2 β‹… q Ξ²2 + β‹― + Ξ›l β‹… q Ξ²l) β‹…Ξ”M + Eπ‘Žπ‘™π‘™) β–Ή where Eπ‘Žπ‘™π‘™ = βˆ‘ ⁑ i=1lΞ›iEi

= 𝖦𝖫𝖢𝖀S,Οƒ (Ξ› β‹…Ξ”M + Eπ‘Žπ‘™π‘™)

= Ξ› ⋅𝖦𝖫𝖢𝖀S,Οƒ(Ξ”M + Eπ‘Žπ‘™π‘™)

While the computation results are the same, as we decompose Ξ› into smaller plaintext polynomials Ξ›1,Ξ›2,β‹―,Ξ›l, the noise generated by each of l plaintext-to-ciphertext multiplications becomes smaller. Given the noise of each GLWE ciphertext in the GLev ciphertext is Ei, the final noise of the ciphertext-to-plaintext multiplication is Eπ‘Žπ‘™π‘™ = βˆ‘ ⁑ i=1lΞ›i β‹…Ei, which is much smaller than Ξ› β‹…E, because the coefficients of each decomposed polynomial Ξ›i are significantly smaller than those of Ξ› (i.e., βˆ₯Ξ›iβˆ₯∞ β‰€Ξ²βˆ•2, whereas βˆ₯Ξ›βˆ₯∞ can be as large as qβˆ•2). This is visually depicted inΒ FigureΒ 11.

PIC

FigureΒ 11: Noise reduction in ciphertext-to-plaintext multiplication by gadget decomposition.

However, we cannot use this decomposition technique to the resulting ciphertext again, because the output of this algorithm is a GLWE ciphertext and converting it into a GLev ciphertext without decrypting it costs much noise and computation time (as we need to multiply the GLWE ciphertext by q Ξ², q Ξ²2,β‹―, q Ξ²l).

As a more efficient technique to re-initialize the noise E, we will describe TFHE’s noise bootstrapping technique in Β§D-1.8.