A-4.2 Theorems

⟨Theorem A-4.2.1⟩ Order Property (I)

For a ∈ 𝔽×, and n β‰₯1, an = 1 if and only if ord𝔽(a) ∣ n

(i.e., π—ˆπ—‹π–½π”½(a) divides n).

Proof.

1.
Forward Proof: If π—ˆπ—‹π–½π”½(a)Β |Β n, then for π—ˆπ—‹π–½π”½(a) = k where k is a’s order, and n = π‘™π‘˜ for some integer l.

Then, an = aπ‘™π‘˜ = (ak)l = 1l = 1.

2.
Backward Proof: If an = 1 and π—ˆπ—‹π–½π”½(a) = k, write n = π‘žπ‘˜ + r with 0 ≀r < k. Then 1 = an = aπ‘žπ‘˜+r = (ak)qar = ar. By minimality of k, we must have r = 0, hence k∣n.
β–‘

⟨Theorem A-4.2.2⟩ Order Property (II)

If π—ˆπ—‹π–½π”½(a) = k, then for any n β‰₯1, π—ˆπ—‹π–½π”½(an) = k gcd ⁑ (k,n).

Proof.

1.
ak,a2k,a3k,… = 1.
2.
Given π—ˆπ—‹π–½π”½(an) = m, (an)m,(an)2m,(an)3m,… = 1
3.
Note that by definition of order, x = k is the smallest value that satisfies ax = 1. Thus, given π—ˆπ—‹π–½π”½(an) = m, then m is the smallest integer that makes (an)m = 1. Note that (an)m should be a multiple of ak, which means π‘šπ‘› should be a multiple of k. The smallest possible integer m that makes π‘šπ‘› a multiple of k is m = k gcd ⁑ (k,n).
β–‘

⟨Theorem A-4.2.3⟩ Order Property (III)

π—ˆπ—‹π–½π”½(a) = π‘˜π‘› if and only if π—ˆπ—‹π–½π”½(ak) = n.

Proof.

1.
Forward Proof: Given π—ˆπ—‹π–½π”½(a) = π‘˜π‘›, and given TheoremΒ A-4.2.2, π—ˆπ—‹π–½π”½(ak) = π‘›π‘˜ gcd ⁑ (k,π‘›π‘˜) = π‘›π‘˜ k = n.
2.
Backward Proof: Given π—ˆπ—‹π–½π”½(ak) = n and letting π—ˆπ—‹π–½π”½(a) = m, TheoremΒ A-4.2.2 gives mβˆ•gcd ⁑ (m,k) = n, so m = ngcd ⁑ (m,k). In particular k∣m, hence m = π‘›π‘˜.
β–‘

⟨TheoremΒ A-4.2.4⟩ Fermat’s Little Theorem

Given |𝔽|= p (a prime) and a ∈ 𝔽, ap = a.

Proof.

1.
If a = 0, then ap = a = 0.
2.
If aβ‰ 0, then a ∈ 𝔽×, the multiplicative group of the field, which has size |𝔽×|= p βˆ’1. By Lagrange’s theorem (in a finite group G, the order of any element divides |G|), the order of a divides p βˆ’1, hence apβˆ’1 = 1. Therefore ap = a.
β–‘