References
-
[1]
- Cornell University. Fields and cyclotomic polynomials, 2024.
https://e.math.cornell.edu/people/belk/numbertheory/CyclotomicPolynomials.pdf.
-
[2]
- Wikipedia. Polynomial ring, 2024. https://en.wikipedia.org/wiki/Polynomial_ring.
-
[3]
- Al Doerr, Ken Levasseur. Polynomial rings, 2024. https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Discrete_Structures_(Doerr_and_Levasseur)/16%3A_An_Introduction_to_Rings_and_Fields/16.03%3A_Polynomial_Rings.
-
[4]
- Mei Li, Curtis Clement et al. Chinese remainder theorem, 2024.
https://brilliant.org/wiki/chinese-remainder-theorem/.
-
[5]
- David Maier. Polynomials and the fast fourier transform (fft), 2011.
http://web.cecs.pdx.edu/~maier/cs584/Lectures/lect07b-11-MG.pdf.
-
[6]
- StephenHarrigan. Lattice-basedcryptographyandthelearningwith errorsproblem, 2017.
https://mysite.science.uottawa.ca/mnevins/papers/StephenHarrigan2017LWE.pdf.
-
[7]
- Ilaria Chillotti. Tfhe deep dive - part i - ciphertext types, 2022.
https://www.zama.ai/post/tfhe-deep-dive-part-1.
-
[8]
- Ilaria Chillotti. Tfhe deep dive - part ii - encodings and linear leveled operation, 2022.
https://www.zama.ai/post/tfhe-deep-dive-part-2.
-
[9]
- Ilaria Chillotti. Tfhe deep dive - part iii - key switching and leveled multiplications, 2022.
https://www.zama.ai/post/tfhe-deep-dive-part-3.
-
[10]
- Ilaria Chillotti. Tfhe deep dive - part iv - programmable bootstrapping, 2022.
https://www.zama.ai/post/tfhe-deep-dive-part-4.
-
[11]
- Marc Joye. Guide to fully homomorphic encryption over the [discretized] torus. Cryptology
ePrint Archive, Paper 2021/1402, 2021. https://eprint.iacr.org/2021/1402.
-
[12]
- Inferati Inc. Introduction to the BFV encryption scheme, 2021.
https://www.inferati.com/blog/fhe-schemes-bfv.
-
[13]
- Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.iacr.org/2012/144.
-
[14]
- Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV revisited.
Cryptology ePrint Archive, Paper 2022/1363, 2022. https://eprint.iacr.org/2022/1363.
-
[15]
- Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol., 34(1), January 2021.
https://doi.org/10.1007/s00145-020-09368-7.
-
[16]
- Mingjia Huo, Kewen Wu, and Qi Ye. A note on lower digits extraction polynomial for
bootstrapping, 2019. https://arxiv.org/abs/1906.02867.
-
[17]
- Robin Geelen and Frederik Vercauteren. Fully homomorphic
encryption for cyclotomic prime moduli. Cryptology ePrint Archive, Paper 2024/1587, 2024.
https://eprint.iacr.org/2024/1587.
-
[18]
- Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 360–384, Cham, 2018.
Springer International Publishing. https://eprint.iacr.org/2018/153.pdf.
-
[19]
- Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-precision
bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial
approximation and inverse sine function. Cryptology ePrint Archive, Paper 2020/552, 2020.
https://eprint.iacr.org/2020/552.
-
[20]
- Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.
META-BTS: Bootstrapping precision beyond the limit. Cryptology ePrint Archive, Paper
2022/1167, 2022. https://eprint.iacr.org/2022/1167.
-
[21]
- Shai Halevi and Victor Shoup. Design
and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive,
Paper 2020/1481, 2020. https://eprint.iacr.org/2020/1481.
-
[22]
- Masahiro Yagisawa. Fully homomorphic encryption without bootstrapping. Cryptology ePrint
Archive, Paper 2015/474, 2015. https://eprint.iacr.org/2015/474.
-
[23]
- Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
Cryptology ePrint Archive, Paper 2012/099, 2012. https://eprint.iacr.org/2012/099.
-
[24]
- Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A full RNS variant
of FV like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Paper
2016/510, 2016. https://eprint.iacr.org/2016/510.
-
[25]
- Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman, Tynan
McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede, Frederik
Vercauteren, and David W. Archer. BASALISC: Programmable hardware accelerator for
BGV fully homomorphic encryption. Cryptology ePrint Archive, Paper 2022/657, 2022.
https://eprint.iacr.org/2022/657.
-
[26]
- Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full
rns variant of approximate homomorphic encryption. In Selected Areas in Cryptography
– SAC 2018: 25th International Conference, Calgary, AB, Canada, August 15–17,
2018, Revised Selected Papers, page 347–368, Berlin, Heidelberg, 2018. Springer-Verlag.
https://eprint.iacr.org/2018/931.pdf.